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Abstract
In this paper, we show the quasi-stationary distribution for Markov-modulated Markov chains. We focus on

two fundamental aspects (existence and uniqueness, domain of attraction) in connection with quasi-stationary dis-
tribution. We first provide a sufficient criterion for the existence of the quasi-stationary distribution. An iterative
algorithm to compute all quasi-stationary distributions is presented. We then carry out a study on the domain of
attraction for the quasi-stationary distribution under a uniqueness condition. In addition, we apply the results to
M/G/1-type Markov chains, and characterize the asymptotic behavior of the quasi-stationary distribution for this
model. Finally, a scalar example is given to illustrate these results.

Introduction
Consider an absorbing discrete-time homogeneous Markov chain {Φn, n ∈ Z+} on a countable state
space E = {0, 1, 2, · · · } with one-step transition matrix P . Assume that 0 is the absorbing state and
E∗ = E\{0} is an irreducible and aperiodic communicating class of Φn. By T , we denote the time
of absorption, or

T = inf{n ≥ 0 : Φn = 0}.
A quasi-stationary distribution for Φn is a probability measure µT = (µj, j ∈ E∗) on E∗ which
satisfies the following equation

PµT (Xn = j|T > n) = µj, for any j ∈ E∗, (1)

for all n = 0, 1, . . ..
Quasi-stationary distributions have been used in a variety of diverse contexts for modelling the

long-term behaviour of stochastic systems which, in some sense, terminate, but appear to be sta-
tionary over any reasonable time scale. In this paper, we investigate the quasi-stationary distribution
for an absorbing Markov-modulated Markov chain, which is a two-dimensional Markov chain with
transition probability matrix P as follows:

P =


1 0 0 0 · · ·

P1,0e P1,1 P1,2 P1,3 · · ·
P2,0e P2,1 P2,2 P2,3 · · ·
P3,0e P3,1 P3,2 P3,3 · · ·

... ... ... ... . . .

 , (2)

where Pi,j is a matrix of size ki × kj with ki, kj < ∞ for each i, j ≥ 0, and e is a column vector of
ones with an appropriate order according to the context.

The study of quasi-stationary distribution on Markov chains was initiated by Yaglom [4], first for
branching processes, and later extended by many other researches (see, for example, [1], [2] and ref-
erences therein). For a countable state Markov chain, the following two are among the fundamental
issues for quasi-stationary distributions (see, for example, Pakes [3]):
(1) determination of all quasi-stationary distributions;
(2) description of the domain of attraction.

In this paper, we consider all two fundamental aspects, mentioned above, of the quasi-stationary dis-
tribution for an absorbing Markov-modulated Markov chain. Our main contributions are threefold:
(1) Providing sufficient and necessary conditions for the existence of a quasi-stationary distribution

and a recursive scheme to calculate all quasi-stationary distributions.
(2) Characterizing the asymptotic behavior of the quasi-stationary distribution and the decay param-

eter of the chain. We show that there are only two types of asymptotic properties for the quasi-
stationary distribution.

(3) Investigating the domain of attraction of quasi-stationary distribution. No such a study could be
found in the literature for Markov-modulated Markov chains, even for quasi-birth-and-death pro-
cesses. We give a sufficient condition for an initial measure to be in the domain of attraction of a
quasi-stationary distribution.

Main results
A nontrivial, nonnegative row vector µT (β) = (µTi (β), 1 ≤ i <∞), where

µTi (β) = (µ(i,j)(β), 1 ≤ j ≤ ki), (3)

is called a β-invariant measure of P on E∗ if the following equation holds

βµT (β) = µT (β)P. (4)

The following relation between a quasi-stationary distribution and β-invariant distribution is well-
known, which is crucial for the characterization of the quasi-stationary distribution

Lemma 0.1. For any ρ ≤ β < 1, µT (β) is a quasi-stationary distribution for P on E∗ if and only if
µT (β) is a β-invariant distribution for P on E∗.

Now, based on the above lemma, we first give the criterion for the existence of the quasi-stationary
distribution.

Theorem 0.2. Suppose that the absorption is certain, that is P(i,j){T < ∞} = 1 for some (then all)
(i, j) ∈ E∗, K = ]{(i, j) ∈ E∗ : κ(i,j) > 0} <∞ and the equation

lim
n→∞,k→∞

∑∞
i′=k

∑m
j′=1 (i′′,j′′)P̂((in,jn),(i′,j′))(α)P̂ ((i′, j′), (i′′, j′′))

(i′′,j′′)P̂((in,jn),(i′′,j′′))(α)
= 0, (5)

holds for an infinite sequence of integers {(in, jn)}, then a quasi-stationary distribution exists.

Secondly, we show a recursive scheme of the calculation of β-invariant measure, which may become
a quasi-stationary distribution if exists and is summable.

Theorem 0.3. For any given β satisfying ρ ≤ β < 1, the m-th element of a β-invariant measure
µT (β) is given by the recursive formula:

µTm(β) =

m−1∑
j=1

µTj (β)Pj,m(βI − Pm,m)−1, m ≥ 2. (6)

Finally, we focus on the domain of attraction of the β-invariant measure, which describe the criterion
for the probability distribution νT to satisfy the following equation:

lim
n→∞

PνT (Φn = (i, j)|T > n) = µTj (β), for any (i, j) ∈ E∗.

Theorem 0.4. LetMT = {m(i,j), (i, j) ∈ E∗} be a measure satisfying∑
(i,j)∈E∗

m(i,j)ν(i,j)(ρ) <∞,

where ν(i,j)(ρ) is the elements of the ρ-invariant vector ν(i,j)(ρ). Suppose that P (i, i) > 0 for any
i ≥ 1 and K <∞. Then,

lim
n→∞

PMT (Φn = (i, j)|T > n) = µT(i,j)(ρ), for any (i, j) ∈ E∗.

Further Research
The above characterization of a quasi-stationary distribution is fundamental, but it is not complete
without a full understanding of the long time behavior for the process, including the speed of con-
vergence to the quasi-stationary distribution. We will investigate the speed of convergence to the
quasi-stationary distribution for Markov-modulated Markov chains in the future.
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